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  الخلاصة

و ذلث  يث  لثول ا اقثل  اليثا  لثرذ ا اليقثتةييل اليويثو يل و الويويثو يل-يتناول هذا البحث  التحييثل الثايناييال اليث  
 Method ofالأيثثثثوام اليحو يثثثثل و الأنلناتيثثثثل الينتةيثثثثل ,بثثثث  هثثثثذا الت اايثثثثاص و ذلثثثث  ب قثثثثتلاا    يةثثثثل اللثثثثوا   

characteristics أ,تيثثثثا البحثثثث  ,يثثثث  أقثثثثال تة يثثثثا ينتةثثثثال اليو ثثثثل تثثثثل ت ايثثثثا أحثثثثاا  الب ثثثثا. ن  يثثثثل تييويثثثثيناو .)
 Timoshenko's theoryتيوا الةصلّ اليقت  ض و ,ز  الةصو  ألاو انل.(ص و اليتضينل ت لي  ال 

لةا و ا ي  التثاالل بثي  اليو ثال الةصثيّل و اانحناتيثل يتقثبا تثل ينتةثال اليو ثال الأنلناتيثل لثول الأذ ا               
 اليويثثو يل و الويويثثو يل بيثثال يتيثثتل نثثاتف ,ثث  االثثتوا تثثل قلثث ا انتةثثال تيثث  اليو ثثال. ي   ثثاه   التيثثتل قثثوا

اليثا  باضضثاتل يلث  ت يث  -تزااا ,نا انتةال اليو ال اليانل لول تي  الأذ ا نتي ل الح ال الي ةا  ليقث   البينثل اليث  
هناقيل الذ اا. ي  هذا الت لي  ناتف ,  ت ي  لوا  الية ث  و اليثاا  ,يث   ثول ال تبثل. ايثا أ  تحييثل التيثوا اليحثاوا 

 small deformation analysis  ل نتاتف يةن ثل ,نثا  ث وا يتو  ثل ,اليثل التحييثل و ذلث  لأن ثا ت يثل تث لي  ( ا ي
      .(geometrical non-linearityا ل يل اليال ال ناقل  

 

ABSTRACT 

This research deals with the elastic-plastic dynamic analysis of prismatic and non-prismatic 

straight members by modeling axial and flexural waves transmission along such structures, 

using the method of characteristics. The analysis is based on the wave propagation in one -

dimensional structural element approach. Timoshenko's beam theory, which includes 

transverse shear deformation and rotatory inertia effects, is adopted in the analysis. 

It was found that the interaction between shear and bending waves causes the flexural 

waves to propagate in prismatic and non-prismatic members in a dispersive manner which is 

caused by the propagation of waves with different velocities. The dispersive phenomenon will 

increase when the plastic waves are propagated in these members due to the complex 

movement of the elastic-plastic interfaces and the changes in member’s geometry. The 

additional dispersion is caused by the changes in sectional and material properties along the 

member's length. In addition, the small deformation analysis does not give a reasonable result 

when high loading conditions are expected because it neglects the effect of geometrical non-

linearity. 

 

Keywords: stress waves, elastic-plastic response, characteristics method, geometrical and                  

material non-linearity. 
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1.INTRODUCTION 

Recently, there has been a marked interest in the dynamic characteristics deformation of many 

engineering applications such as high-speed machinery, airplane structure, tall building…etc. 

The rapid expansion in the study of wave propagation was prompted, in part, by the necessity 

to understand the transient history of such structures that are subjected to rapidly applied 

loads.  

The beam is one of the fundamental elements of an engineering structure. It is found in 

the most structural applications. Moreover, structures like helicopter rotor blades, spacecraft 

antenna, airplane wings, high-rise building, gun barrels, robot arms and subsystems of more 

complex structures can be modelled as a beam-like slender member (Malatkar, 2003). 

Therefore, studying the dynamic response, both elastically and plastically, of this simple 

structural component under various loading conditions would help in understanding and 

explaining the behaviour of more complex structures under similar loading.  

        The main objective of this study is to use the method of characteristics to deal with 

elastic-plastic dynamic analysis of one-dimensional prismatic and non-prismatic straight 

members, taking into account that these structures are subjected to transient loading. Where 

this method needs relatively small computer storage with good solution reliability. Thus, the 

designers can easily  overcome the difficulties in the analysis when their designs are subjected 

to impact and earthquakes loadings. The effect of geometrical and material’s non-linearity 

(bilinear stress-strain relation) are considered when high loading conditions are expected.   

      A parametric study is presented in order to determine the effect of several influencing 

parameters on the behaviour of vibrating beam elements.  

 

2. WAVE PROPAGATION IN ONE-DIMENSIONAL STRUCTURAL ELEMENT 

The behaviour of structural elements under impact or impulsive loads is a subject of great 

interest in the structural dynamic analysis. When forces are applied to an elastic -plastic 

medium over a very short period, the response should be considered in terms of wave 

propagation theory. The study of transient waves has important implications and applications 

for structures subjected to such loads. The revival of interest in elastic -plastic wave 

propagation during the last four decades has been possible because of the rapid development 

of computing facilities and experimental equipments (Al-Mousawi, 1983). 

Waves in one-dimensional structural members can be classified into three groups namely; 

axial, torsional and flexural waves. The problems of flexural wave propagation have not b een 

so extensively treated as have the problems of axial wave. This is due to the complexities 

involved in the propagation of flexural waves and their dispersive characters. The Euler -

Bernoulli’s beam theory is inadequate for studying the transient bending waves because it 

leads to the physically impossible conclusion that disturbances are propagated 

instantaneously; the theory also neglects the effects of shear deformation and rotatory inertia  

(Al-Mousawi, et al., 1988). 

        Timoshenko’s beam theory is the only approximate theory that contains the essential 

features of exact theory in simplified form (Achenbach, 1973). This theory leads to more 

accurate solutions than the Euler-Bernoulli’s beam theory because the effects of shear 

deformation and rotatory inertia are included in the governing equations. 
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3. THE METHOD OF CHARACTERISTICS  

The method of characteristics (MOC) is used for the numerical solution of first order and 

second order partial differential equations (PDE) of hyperbolic type. For the hyperbolic PDE, 

there exist two distinct families of real characteristic curves at each point (x,t) as shown in 

Fig.(1). For the parabolic case, the two characteristics coincide and they are of no significant 

value in understanding the behaviour of the solution, whereas the elliptic form of PDE has no 

real characteristics [(Nowacki, 1978),( Mostafa,2005)]. 

 

 

    

 

 

  
 

 

 
 

 

 
 

Fig. (1): Characteristic network. 

 

       The real characteristics of hyperbolic PDE are curves in the real domain of the problem, 

and discontinuities will propagate along the characteristics. An explicit step-by-step process is 

usually used in building up simultaneously the characteristic grid and solving the PDE at the 

grid points. 

The main advantage of the method of characteristics is that discontinuities in the initial 

values may propagate along the characteristics. Furthermore, the method of characteristics 

has the advantage that it follows the physical waves fronts as they are propagated along the 

beam (Al-Mousawi, et al., 1988). Thus, the method of characteristics is used in this study to 

overcome the disadvantages of other techniques.  

 

4. THEORETICAL ANALYSIS 

 

(A) Axial stress Waves 

 

When the elastic dynamic load is subjected to an element over a very short period, the 

response should be considered in terms of elastic wave propagation theory. Here, the 

deformation caused by this load will recover when the load is removed.  

Fig. (2) shows a general element with length dx under axial loading condition. 

 

 

 

 
 

 

 
 

 
 
 
 

 
Fig.(2): Axial motion of  a general element 
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The characteristics equations of such element for the elastic vibration are  (Mostafa, 2005): 

 

 
dt

dF ρ a Ce 
dt

dU =0                                                                                                           (1)  

 

where Ce is the elastic wave’s speed that equal to: 

 



E
Ce 

                                                                                                                                          (2) 

   

and for the plastic loading wave, the characteristics equations will become: 

 

dt

dF  ± ρ a Cp  
dt

dU  = 0                                                                                                        (3) 

 

where Cp is the plastic wave’s speed that equal to: 

 


1E

CP                                                                                                                                          (4) 

 

Furthermore, for the unloading axial wave, the characteristics equations has the form (Cristescu, 

1967): 

 


dt

dF  ρ a Ce 
dt

dU =a Ce 
dx

d m a E 
dx

dUm                                                                                           (5) 

   

 In addition, the new grid length and element’s area are equal to:  

∆S = ( 1 +  ε ) ∆x                                                                                                               (6)                                         

a(t+Δt)=
)1(

)(



ta                                                                                                                       (7) 

 

(B) Flexural Stress Waves 
 

The problem of flexural stress wave propagation in beams has not been so extensively treated 

as has the problem of axial wave propagation. This is due to the complexities involved in the 

propagation of such waves and their dispersive character (Al-Mousawi, et al., 1988).  

     Timoshenko’s beam theory (1974) is considered to be only approximated theory that 

contains the essential features of the exact theory in a simplified form. This theory leads to 

more accurate solutions than the Euler-Bernoulli’s theory because the effects of shear 

deformation and rotatory inertia are included in the governing equations. In this theory, to 

simplify the derivation of the equations of motion, the shear stress is assumed to be uniform 

over a given cross section. In turn, the shear correction factor is introduced  into account for 

this simplification, and its value depends on the shape of the cross section, [Cowper (1966), 

Gruttmann and Wanger (2001)]. 

Now consider the small transverse vibrations of a general element as shown in Fig. (3). 

 

 

 



 5 

 

                     

 

 

 

 

 

 

Fig. (3): general element under flexural vibration (elastic) 

The characteristics equations of such element for the elastic vibration are(Mostafa, 2005): 

For shear, 

 

   
dt

dQ    ρ a Ces 
dt

dV  = – K a G                                                                                         (8) 

For bending moment, 

 

  
dt

dM    ρ IS Ce 

dt

d  =   Ce Q                                                                                             (9)   

where 

  Ces=


KG                                                                                                                          (10) 

and the characteristics equations for the plastic vibration ,according to Fig. (4), are(Mostafa, 

2005):  

For axial, 

 

  
dt

d [ F cos( Ψ  )] – 
dt

d [ Q sin( Ψ )]   ρ a Cp 
dt

dU  = 0                                                        (11)    

For shear, 

 

  
dt

d [ F sin( Ψ )] + 
dt

d
[ Q cos( Ψ )]   ρ a Cps 

dt

dV
 = – K a G1                                     (12) 

For bending moment, 

  
dt

dM    ρ Is Cp 
dt

d
 =   Cp Q                                                                                             (13) 
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 Fig. (4): general element undergoing flexural vibration (plastic) 
 
 

 

Where 

 

   Cps=


1KG                                                                                                                                     (14)   

                                                                            

The displacement components u & v will be adopted as the two basic parameters in 

defining other geometrical quantities. Consider the typical element whose original axial 

length before deformation is dx as depicted in Fig. (4). After deformation, its length becomes 

dS, which is related to dx by (Reid et al, 1998), 

 

    dS = 22 )1()(
dx

du

dx

dv
  dx                                                                                                   (15) 

 

The quantities Ψ, sin( Ψ ), cos( Ψ ) in eqs. (11)& (12) are expressed in terms of u & v by 

(Reid et al, 1998), 

 

  Ψ = tan
 -1

( 
dxdu

dxdv

1
 )                                                                                                       (16) 

  sin( Ψ ) = 
22 )1()( dxdudxdv

dxdv



                                                                                          (17) 

  cos( Ψ ) = 
22 )1()(

1

dxdudxdv

dxdu



                                                                                          (18) 

And the curvature is equal to: 

 

  
5.122

2222

])1()[(

)()()1(

dxdudxdv

dxuddxdvdxvddxdu

dS

d
k







                                                                            (19) 
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Furthermore, for the unloading flexural wave, the characteristics equations has the form(Mostafa, 

2005): 

For axial, 

 

dt

d [ F cos( Ψ  )] – 
dt

d [ Q sin( Ψ )]   ρ a Ce 
dt

dU  = a Ce 
dS

d { σm cos[ Ψm ] – τm sin[ Ψm]}– a E (                                                                                                                                                                                                           

dS

dUm )                                                   (20) 

 

For shear, 

 

dt

d [ F sin( Ψ )] + 
dt

d [ Q cos( Ψ )]   ρ a Ces
dt

dV   + K a G = a Ces
dS

d { σm(S) sin[ Ψm(S)]                                                                                                             

                                   + τm(S) cos[ Ψm(S) ]} –K a G [ )(
)(

S
dS

SdV
m

m  ]                            (21) 

 

For bending moment, 

 

dt

dM    ρ Is Ce 
dt

d
 =   Ce Q + Ce 

dS

dM m  –E Is 
dS

d m                                                               (22) 

 

5. PARAMETRIC STUDY  

 

A parametric study is performed to assess the influence of several important parameter s on 

the dynamic behaviour of straight members. 

The selected parametric studies in this chapter can be summarized as follows:  

a. The effect of tapering ratio. 

b. The effect of sudden discontinuity in cross section. 

c. The effect of several bonded materials. 

d. The effect of large deformation behaviour. 

e. The effect of plastic modulus. 

f.   The effect of elastic yield limit. 

Each one of the above parameters is studied individually by analyzing the geometry of 

the member, material properties and type of external excitation. 

 

a. The Effect of Tapering Ratio 

To show the effect of tapered ratio on the elastic dynamic response of the member structure, 

a non-prismatic cantilever beam with rectangular cross section is analyzed. All the details of 

the beam’s properties and the dynamic characteristics are given in Fig. 5. 

Fig. 11 shows that when the tapered ratio (h1/h2) increases from (1.5) to (3), the 

amplitude of the axial force, at the fixed end, will increase and become more dispersive 
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because of increasing the change in the cross section between any two adjacent elements 

and this leads to more disturbance characteristics caused by the wave reflection.  

                                                    

Fig. (5): Details of beam’s properties and dynamic characteristics. 

 

b. The Effect of Sudden Discontinuity in Cross Section 

To assess the effect of sudden discontinuity in the cross section, a cylindrical cantilever 

beam made from the same material throughout its length with a discontinuity introduced by 

the change of the diameter in the mid-span of the beam is analyzed. All the details of the 

beam’s geometry and the dynamic characteristics are given in Fig. 6. 

Fig. 12 shows the change in the diameter ratio for a steel beam on time history of 

bending moment at 0.2475 m from the free end, i.e. before the discontinuity, where the 

lateral force and bending moment are applied. Four different cases of diameters ratios 

DR=1, 1.5, 2, 2.5 are investigated. It is shown that the peak values of the bending moment 

for the three stepped cases are decreased with decreasing the diameters ratio. This indicates 

that the reflected bending wave, with the same sign, through the discontinuity increases with 

increasing the difference between the two diameters.  

              

                                     

 

 

Fig. (6): Details of beam’s properties and dynamic characteristics. 

c. The Effect of Several Bonded Materials 

To show the effect of several bonded materials on the dynamic behaviour of beam, a 

prismatic cantilever beam, square in cross section, consists of two materials fused together 

at the mid-span is analyzed. All the details of the beam geometry and the dynamic 

characteristics are given in Fig. 7. 

Fig. 13 shows the reflection of the axial wave in opposite direction when it reaches the 

position of discontinuity (material’s property change). It can be noticed that the magnitude 
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of the reflected wave depends on the difference of the term ρCe for the two materials on the 

two sides of the junction point. 

  

Fig. 7: Details of beam’s properties and dynamic characteristics. 

 

d. The Effect of Large Deformation Behavior 

To assess the effect of large deformation behaviour, or so-called geometrical non-linearity 

effect, on the elastic-plastic dynamic response of one-dimensional member, a prismatic 

cantilever beam with square cross-sectional area is analyzed. All the details of the beam’s 

geometry and the dynamic characteristics are given in Fig. 8. 

Fig. 14 a, b shows that the effect of longitudinal displacement cannot, however, be 

ignored for very large deflection because it will give incorrect prediction in the periods and 

the amplitudes of the vibration. Moreover, it can be noticed that the large deformation 

analysis gives more dispersive (wavelength is changed as the wave propagates through the 

medium) effects than the small deformation analysis. This event is caused by the change in 

geometrical properties, the length and the cross section, of the beam, where the beam 

becomes no more prismatic. 

 

 

Fig. 8: Details of beam’s properties and dynamic characteristics. 
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e. The Effect of Plastic Modulus 

To study the effect of plastic modulus on the elastic-plastic response of vibrating beam, a 

prismatic cantilever beam with square cross-sectional area is analyzed. All the details of the 

beam geometry and the dynamic characteristics are given in Fig. 9. 

Fig. 15 a, b shows that at a time before 0.4 ms , the elastic waves that propagated with a 

stress equal to the yielding stress will vibrate at a large amplitude. After that, the plastic 

waves will reach the mid-span of the beam. At this moment, the kinetic energy will begin to 

decrease due to local plastic deformations along the beam’s length (energy conservation). 

Moreover, it can be noticed that when the plastic modulus decrease (i.e., the beams becomes 

more softening), the kinetic energy is also decreased due to increasing the strain energy 

(accumulative plastic deformation) that stored in the member.  

                                                
               

Fig. 9: Details of beam’s properties and dynamic characteristics. 

 

f. The Effect of Elastic Yield Limit  

To study the effect of the elastic yield limit on the elastic-plastic dynamic behaviour of the 

beam structure, a non-prismatic cantilever beam with rectangular cross-sectional area is 

analyzed. All the details of the beam geometry and the dynamic characteristics are given in 

Fig. 10. 

Fig. 16 a, b, c, d shows that the onsets of yielding are delayed with increasing the yield 

limit of the material. Where, the onset of yielding are taken place at times 0.3286, 0.8073, and 

1.6233 ms with the corresponding yielding limits equal to 200, 300, and 400 MPa 

respectively. In addition, it can be noticed that the location of the first yielding is propagated 

forward the fixed end of the cantilever beam with increasing the yielding limit due to 

increasing the moment arm, i.e. increasing the bending moment. In addition, it can be shown 

that there was some disturbance near the positions of the first yielding that caused by the 

instantaneous change in the material’s property (elastic-plastic interface).  

 

  

 

 

 

 

 

 

Fig. 10: Details of beam’s properties and dynamic characteristics.     
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Fig. 14 a 
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7. CONCLUSIONS 

Based on the results obtained from the present analysis procedure, the following conclusions can be 

drawn: 

1. The interaction between shear and bending waves causes the flexural waves to propagate 

in prismatic and non- prismatic members in a dispersive form.     

2. The method can efficiently predict forces, velocities and displacements throughout a 

structure under consideration at any instant. 

3.  Non-linear behaviour should be adopted when high loading conditions are expected.  

4. In large deformation analysis, flexural waves will generate axial waves as a result of 

geometric non-linearity. 

5. Discontinuities of cross-sectional area and the change in material properties along the 

longitudinal axis of the member have important effects on the amounts of reflection and 

transmission stress waves and their oscillations. 
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NOTATIONS 

                                                                                                                                 

    

Symbol Definition Units 

A Cross-sectional area at node m
2 

a Average cross-sectional area of the element m
2
 

b Width of the element m 

Ce Elastic axial and moment wave speeds m/s
2 

Ces Elastic shear wave speed m/s
2
 

Cp Plastic axial and moment wave speeds m/s
2
 

Cps Plastic shear wave speed m/s
2
 

E Modulus of elasticity N/m
2 

http://www.mscsoftware.com/
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E1 Plastic modulus N/m
2
 

F Axial force N 

G Elastic modulus of rigidity N/m
2
 

G1 Plastic modulus of rigidity N/m
2
 

h Depth of the element m 

I Moment of inertia at node m
4 

Is Average moment of inertia of the element m
4 

K Shear correction factor - 

k Bending curvature m
-1 

L Length of the member m 

M Bending moment N.m
 

Mm Maximum bending moment N.m 

Q Shear force N 

t Time s 

U Axial velocity m/s
 

Um Maximum axial velocity m/s 

u Axial displacement m 

V Lateral velocity m/s
 

Vm Maximum lateral velocity m/s 

v Lateral displacement m 

x,y Cartesian axes m 

ΔS Grid length after deformation m 

Δt Time incremental s 

Ψ Angular displacement rad
 

Ψm Maximum angular displacement rad
 

ψ Angular velocity rad/s
 

Ψm Maximum angular velocity rad/s 

ρ Mass density Kg/m
3 

ε Axial strain - 

εm Maximum axial strain - 

σ Axial stress N/m
2 

σm Maximum axial stress N/m
2
 

σy Elastic yield limit N/m
2
 

τ Shear stress N/m
2
 

τm Maximum shear stress N/m
2
 

γ Shear strain - 

γm Maximum shear strain - 

  

 

 

          


